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Anomalous Biennial Oscillations in a Fisher Equation 
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The dynamics of a biological population governed by a modified Fisher equation 
is studied by means of Monte Carlo simulations. Reproduction of the population 
occurs at discrete times, while transport caused by diffusion and conduction 
takes place on shorter time scales. The discrete reproduction, modeled with a set 
of coupled logistic maps, exhibits phenomena which are not evident in the usual 
continuum version of the Fisher equation. Several mechanisms for biennial 
oscillations of the total population are investigated. One of these shows an 
ordered coupling between random diffusive motion and the chaotic attractor of 
the logistic map. 
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1. INTRODUCTION 

The dynamics of a popula t ion  of biological species subject to environmen-  
tal constraints is an impor tant  and challenging problem. The overwhelming 
number  of variables influencing the dynamics makes it difficult to achieve 
an appreciation of general features. However, in many  instances, complex 
interactions between a species and its envi ronment  combine simply to yield 
a distinct pattern. It has often been found that these patterns may be 
captured in highly simplified mathematical  models of populat ion dynamics. 
Because the models are quite general, one expects the results to apply to 
many different species in a variety of ecosystems. 
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One such mathematical model which has been applied to population 
dynamics is the Fisher equation c'' 21 

Ou(r, t) 
D V 2 u ( r ,  t )  + u(r ,  t)[ 1 - u(r, t)] (1) 

Ot 

This equation models the spatial movement of the species u(r, t) as a dif- 
fusive process. The second term on the right-hand side of Eq. (1) models 
the reproduction of the species at position r as a standard Verhulst process. 
This term can be broken down further into two terms. The first is linear in 
u(r, t), representing the growth of the population in proportion to its 
present size. The second term is quadratic in u(r, t), and it has the effect of 
curtailing population growth. It is meant to model environmental factors 
which inhibit growth, such as a limited food supply, an increase in the 
number of predators, and the increased likelihood of epidemics in large 
populations. 

The behaviour of Eq. ( 1 ) has been investigated both through analytic 
techniques and by Monte Carlo simulation.~-5~ Furthermore, extra terms 
have been added in some studies to model advection of the population 
(e.g., a school of fish being carried by ocean currents), as welt as con- 
vection, where the size of the population is proportional to its rate of 
movement. ~4'5~ The results predict that a population initially localized in 
space expands outward at a constant rate. The presence of a convective 
term causes an asymmetry in the expansion. 

It is important to realize, however, that Eq. (1) is a continuum 
approximation to population dynamics. This is not necessarily appropriate 
as a model for many species, especially those which reproduce at specific 
times during the year. In this case a better model would allow for repro- 
duction to occur at discrete time intervals, with overall movement of 
the population taking place on much shorter time scales. This leads to 
important differences in the dynamics, stemming from the fact that the 
discrete version of the Verhulst term in Eq. (1) is markedly different in its 
behaviour from the the continuum version. 

The discrete Verhulst process, with an additional factor r, is com- 
monly known as the logistic map: 

u,  + t = ru , (  1 - -  u , )  (2) 

The logistic map has figured prominently in studies of chaos for systems 
with few degrees of freedom (see, e.g., ref. 6). Different values of r produce 
a variety of steady-state properties. When 0 < r < 1, the logistic map has a 
fixed point at zero. For 1 < r < 3 ,  the logistic map has a nonzero fixed 
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point, which monotonically increases starting from zero over the interval. 
For r > 3, the steady-state attractor is a limit cycle, which first oscillates 
between two values and, for higher r, becomes quadruply valued. The 
period doubling in the limit cycle keeps occurring until a critical value of 
r is reached at which point the attractor becomes chaotic. 

This paper studies the effect of a discrete reproductive process in a 
modified Fisher equation through Monte Carlo simulations. This involves 
placing logistic maps on a two-dimensional grid and coupling them with 
diffusive and conductive processes to simulate various terms in the Fisher 
equation. Coupled maps have been studied in previous work, in the context 
of turbulence. 17' 8~ The present model has some results which are similar, 
but the biological approach reveals a host of phenomena which do not 
arise in these other works. These results also do not appear in studies of 
the continuous Fisher equation. Many, but not all, of the new results are 
traceable to properties of a single logistic map. They account for steady 
states where, for example, the population approaches a limit cycle, and also 
where the system exhibits cooperative effects so that all subpopulations 
reproduce in tandem. On the other hand, there are some surprising effects 
that arise from the effect of having many maps, as a result of subtle couplings 
between diffusive and reproductive processes. 

The work presented here applies to many types of species. However, 
the particular species in the minds of the authors was selected to be the 
Atlantic cod. Their ocean home was simulated as a two-dimensional lattice. 
The variable u(r, t), representing a general biological population, will be 
referred to as a cod population for the remainder of the paper. 

2. T H E  M O D E L  A N D  S I M U L A T I O N  D E T A I L S  

The modified Fisher equation used in the simulations is given by 

Ou(r, t) 
Ot 

DV2u(r, t )+g(u(r ,  t), r ) .  Vu(r, t) 

or~ 

+ ~ ru(r, t)[1 --u(r, t)] ~( t -kJ t )  (3) 
k = l  

The 0-functions in the last term on the right-hand side ensure that 
reproduction only occurs once every time interval /It. This is called a 
"year" throughout the rest of the paper, although it is more general. 

The effect of the second term is to cause the local population to move 
according its value and to the properties of the particular region of space. 
It is meant to model the conduction of the cod according to spatial gradients 



764 Walsh et  al. 

in the food supply per number of cod. The function g(u(r, t), r ) .  Vu(r, t) 
introduces a nonlinearity into the problem, similar to that of the convec- 
tion term in other work t4  ̀5) in addition to that in the logistic terms. It is 
dependent on both the local population and the spatial coordinates. The 
form chosen appears overly complicated, but is easy to implement in the 
simulations: 

g(u(r, t), r) = [ 1/(1 + exp { - J V [ f ( r ) / u ( r ,  t )] l})  - 1/2] V[f(r) /u(r ,  t)] (4) 

The Monte Carlo simulations were run on a square lattice of size 20 x 20, 
representing a region of ocean. A few of the simulations involved a larger 
lattice of size 80 • 80. These larger simulations were run mainly to check 
for finite size effects in the smaller ones. 

The simulations are defined as follows. On each lattice site, called a 
"cell," a population of cod u,. resides, where 0 < u; < 1. Here, the subscript 
i labels the particular cell. The values of u i are allowed to change through 
diffusive, conductive, and reproductive processes. Reflective boundary 
conditions are maintained, so that movement of cod never results in cod 
entering or exiting the system. These boundary conditions introduce 
inhomogeneities into the system and fluctuations that occur near the edge 
may decay more slowly because of the reflective walls than fluctuations that 
occur near the center of the system. The results presented below are 
expected to be insensitive to these boundary conditions. 

Another variable defined at every cell represents the local food supply, 
and is denoted by f~. An additional array is set up identical in size to the 
first, which stores the distribution of food. The mean value of the food f , ,  
is chosen to be a number on the unit interval. The distribution is uniform 
about the mean with extreme values f , ,  +_ e. The quantity e is a parameter 
which can be set externally, and it is called the "food noise". The food 
distribution once set is fixed for the duration of the simulation. There is no 
suggestion that the demise of the cod population is related to an inade- 
quate food supply. We have assumed that the food density and its regional 
variation are controlled by factors other than the cod population, which 
has a rather limited impact. We are not simulating a prey/predator 
situation. 

The diffusion term in Eq. (3) is implemented in the simulations by 
means of a random walk. A fraction of the population in a given cell is 
moved with probability 4/5 to one of its four nearest neighboring cells. No 
motion may also occur with probability 1/5. The fraction of the population 
which is moved in a single diffusion step is always ~u, where 0 < ~ < 1 is an 
adjustable parameter. This procedure is applied to each cell in the system, 
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52 times per yearly reproductive cycle (representing a time scale of 1 week 
between diffusive moves). 

The conduction step, representing the second term in Eq. (3), occurs 
biweekly, or once every two diffusion steps. For each cell, one of the four 
nearest neighbours is chosen for consideration. The "food density," or food 
per cod, is computed for both the cell and its selected neighbour. If the 
food density is lower in the neighbour, no cod moves, and the process 
stops. If the food density is higher in the neighbour, an amount of cod in 
the cell is moved to the neighbour. I f y  = f , , / u , , - f ~ / u ~  equals the difference 
in food densities between the cell labelled by i and its neighbour, labelled 
by n, then the amount of cod depleted in cell i, Aui, is found from the 
following formula for y greater than O: 

(1 - e  -y)  
Aui = ui 2( 1 + e --") (5) 

The cod that is removed from cell i is added to the cod in cell n. This 
functional form for determining the magnitude of the flow of cod from 
a lower food density to a cell with a higher food density is somewhat 
arbitrary, although there are several desirable features. A more appropriate 
function will be species dependent and should also reflect properties such 
as local currents, migratory paths, etc. The amount of cod which moves 
increases monotonically with food density gradient, but Eq. (5) ensures 
than no more than half of the cod population will migrate from any cell to 
its neighbour. 

Every year, after 52 diffusion steps with 26 intervening conduction 
steps, the logistic map was applied to each cell to determine the new pop- 
ulation of cod. The logistic map parameter r was held constant for some of 
the simulations. In others, r was set according to the amount of cod and 
food in each cell. The exact implementation is described in the next section. 
Unless otherwise stated, all maps are initialized at the onset of the simula- 
tion with values between 0 and 1 drawn from a uniform distribution. 

3.  R E S U L T S  

In the first set of results, the behaviour of the total cod population has 
been investigate~l for fixed values of the logistic map parameter r. This 
implies that the dependence of the reproduction rate of cod on the local 
food supply is neglected. The understanding gleaned from these studies 
helps to clarify the more complicated simulations, where r is set for each 
cell according to the values of fg and ui. 



766 Walsh e t  al. 

Three distinct regimes of the logistic map were selected for the simula- 
tion studies with constant r. The first of these is where the logistic map 
moves toward a nonzero fixedpoint attractor. The logistic map parameter 
was chosen to be r - -3/2 ,  giving a fixed point-solution for the cod popula- 
tion of 1/3. The other two values of r chosen for study were r=3.25,  
corresponding to the double limit cycle attractor, and r =4.00, giving a 
chaotic attractor. 

Of primary concern for the simulations with constant r is the effect 
that diffusion and conduction along the food gradients has on the total 
population. Without any diffusion or conduction, each cod subpopulation 
residing in its own cell independently approaches the logistic map attractor. 
If the attractor is a fixed point, with a value u*, the total population 
approaches a value Nu*, where N is the total number of cells in the system. 

3.1. Fixed-Point Regime 

In the fixed-point regime, with r = 3/2, both diffusion and conduction 
were observed to depress the mean total cod population. When only dif- 
fusive movement is simulated, the total population fluctuates about a 
fixed mean value which is measurably less than that of a system without 
diffusion. 

The depression of the mean value is a nonlinear effect, which is caused 
by the stochastic noise associated with the diffusive process. It is commonly 
observed in many simple systems) 6~ In fact, if one adds white noise inde- 
pendently to N uncoupled logistic maps, it can be shown that, for small 
noise amplitude q with r =  3/2, 

r - 1  r - l [  2,'-" 1 ~/2 
< u > =  9-~--r + 9-~7- r 1 - ( r _ l ) 2 q  2 (6) 

However, the cod simulations do not obey this equation, because the con- 
servation of cod couples the noise between different maps. Every diffusive 
move takes a certain amount of cod from one cell and places that same 
amount in an adjacent cell. Applying the logistic map to each cell causes 
the maps to approach the fixed-point value u * =  1/3 monotonically from 
either below or above, depending upon the initial value. Summing all of the 
maps together to get the total cod population leads to an overall canceling 
of noise values about the mean. Naively, one may assume that the variance 
a in the total population is a measure of the noise q appropriate for a 
single cell as described by Eq. (6). This is found not to be the case and the 
use of a in Eq. (6) leads to a value of <u> which is too large compared to 
that observed for the coupled system. 
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Fig. I. Variance of the total cod populat ion about  the mean versus diffusive step size for 
fixed r =  3/2. 

The scaling properties of the variance with the noise amplitude may be 
determined by imagining a simpler problem in which two logistic maps 
coevolve. Stochastic noise with a given amplitude is added to each map 
between time steps. The maps are independent, except that if a given amount 
of noise is added to one map, the same amount of noise is subtracted from 
the second map. According to the logistic equation (2), the sum of the two 
maps in the next time step will differ from twice that of a single map by a 
term proportional to D 2. This term scales as the standard deviation of the 
maps from the mean value. The variance should therefore scale as D 4. 
Figure 1 shows the variance of the total cod population as a function of the 
diffusive step size. To a high degree of accuracy, the relation tr2~ D 4 is 
obeyed, in accordance with the scaling argument for two maps. 

Now the effect of the conduction will be considered without diffusion. 
An amount of food taken from a random sample of a distribution is placed 
in each cell. The  distribution was chosen to be uniform about a mean value 
equal to 0.8. The allowed values fell between 0.8 _+e, where e (called the 
"food noise") is a variable parameter. 

The conduction of cod attempts to make the food density (food/cod) 
equal in all cells. Even if this is only partially accomplished, the deviation 
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Fig. 2. Variance of the total cod population about the mean versus food noise for fixed 
r =  3/2. 

0.1 

of cod in each cell from the mean should scale as the food noise e. The total 
population will have a standard deviation which also scales as e, so that the 
variance will scale as e 2. Figure 2 shows the simulation data for conduction 
without diffusion where r =  3/2. The variance is observed to scale as e -~, as 
expected. 

It is interesting to compare the scatter of points about the mean for 
the diffusive and conductive simulations. The conservation of cod in the 
diffusive process reduces the noise to somewhat below the white noise 
value. However, the observed noise in the total population for the purely 
conductive process is much smaller (for e ~ D). This implies that the con- 
ductive process is strong enough to drive the system each year to 
approximately the same state before reproduction. Figure 3 illustrates these 
observations. The maps u(r, t) are initialized randomly with values between 
0 and 1 drawn from a uniform distribution at the start, t = 0. In the case 
of no diffusion and no conduction, u(r, t) approaches u* from below. Maps 
with values near to 1 flow to near 0 at the next iterate, while those near 
0 slowly approach 1/3 from below. Contrast this behaviour with the case 
of no diffusion but conduction with small "food noise." Conduction under 
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Fig. 3. Total popu]ation versus time for fixed r = 3/2. Squares: no diffusion or conduction. 
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step size D =0.1, no conduction. Plusses: diffusion with D = 0.I, conduction with food noise 

~=0,01. 

these conditions leads to a cod density ui in each cell of approximately 1/2 
and hence the coupled system approaches its asymptotic limit from above. 

When both conduction and diffusion are turned on with r =  3/2, a 
competition takes place between the two processes. Conduction attempts to 
drive the system to a state predetermined by the food distribution, where 
the food per cod is equal in every cell. The diffusive motion tries to ran- 
domly move the cod, and thus competes with the quenched disorder of the 
food distribution. The end result is that the noise in the total cod popula- 
tion is greater than that of a purely conductive process, but less than a 
purely diffusive one. The effect is exhibited in Fig. 3. 

3.2. Double Limit Cycle Regime 

When the parameter r is chosen so that the attractor is a double- 
valued limit cycle, without diffusion or conduction of cod, the total popula- 
tion oscillates between two numbers. The actual values of these numbers 
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depend upon how many cells are on one particular leg of the limit cycle at 
a given time, which in turn is a function of the initial conditions. For 
random initial cell values, the total population will typically oscillate within 
N_+_ x / N  times the mean of the two limit cycle values. 

With a small amount of diffusive motion, the total population behaves 
in a manner similar to that of a system without noise. There is a small 
amount of noise detectable, but no other appreciable difference. As the 
diffusive step size is increased, there is an increasing probability for a map 
on one leg of the limit cycle to cross over to the other leg. This causes 
disruptions of the initial pattern so that the system exhibits "bursts" of 
activity where more maps are consistently on one half of the limit cycle for 
several cycles. In principle, the average number of years for these bursts to 
cycle should be determined by the diffusive step size. 

The effect of conduction without diffusion is strikingly different. When 
the noise in the food supply is set to zero, the system "locks" into a state 
where every map is on the same leg of the limit cycle. The conduction tends 
to drive the system to a state where the food density is the same in every 
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cell. If  the food noise is small, this will cause the cod in all maps to 
equalize. As the food noise is increased, the system still exhibits the limit 
cycle pattern, although there is some noise which is qualitatively similar to 
case where only diffusive motion is allowed. The mode-locking behavior is 
similar to that of the coupled circle maps in the work of Stassinopoulis 
et  al.  ~8} 

When both conduction and diffusion of cod are allowed to occur, 
there is competition between the two processes, as was observed for the 
case where the attractor is a fixed point. For most values of the diffusive 
step and the food noise, the system locks up so that all maps are on the 
same leg of the double limit cycle. There is a certain amount of noise 
observed, as when the food noise is high for the purely conductive case. 
Figure 4 shows all three of the above cases. 

3.3.  C h a o t i c  R e g i m e  

When the logistic parameter is fixed at r = 4.00, the system is in the 
chaotic regime, where successive values of the logistic map are statistically 
uncorrelated. For r=4.00,  all values of the logistic map between zero 
and one are allowed, and they are sampled from a distribution which is 
approximately uniform (near the endpoints of the unit interval, the 
distribution is higher than toward the middle). Without any diffusion or 
conduction, the total population has a mean value of N / 2 .  The standard 
deviation of the total population from the mean depends on N in the usual 
manner according to the central limit theorem: a ~ N ~/'-. 

If diffusion of the cod is introduced without conduction, a remarkable 
effect occurs in the chaotic regime. Figure 5 shows that the system imme- 
diately goes into a state where the total cod population oscillates between 
two values. Although the behavior is similar in appearance to the double 
limit cycle, the mechanism is very different. It is caused by a biennial 
oscillation of the system distribution. Initially, the distribution of maps is 
uniform between zero and one. When diffusion acts, the cod populations 
spread out, so that most cells have a population near 1/2. This results in 
a distribution for the cod population which resembles a normal distribu- 
tion, peaked at a value of 1/2. Next, the logistic map acts and moves the 
cell populations to higher values near one. This effect occurs because of the 
way the maps are folded and mixed by the chaotic attractor. Values near 
1/2 are always Mapped near the high end of the unit interval when r = 4.00. 

The next set of diffusive steps have subtle effects. Cell populations are 
predominantly high, so that random motion of the cod will still give a 
distribution for the system with a high mean. The shape of this distribu- 
tion, however, is highly asymmetrical, tapering down toward 1/2 while 
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remaining large at one. Finally, when the logistic map acts for the second 
time, the end result resembles a uniform distribution (again caused by the 
properties of  the chaotic attractor), and the biennial cycle can begin anew. 
This subtle interplay among the logistic map in the chaotic regime, diffu- 
sion, the size of  the diffusion step, and the constraint that the population 
is limited to a maximum of 1 is responsible for the stability of  the biennial 
oscillations. 

The interplay between the chaotic attractor and the diffusive motion 
seems to be fairly stable. Larger systems (80 x 80) show the same behaviour, 
and are stable for longer times than the smaller systems. This would indicate 
that instability arises as a finite-size phenomenon. The conductive process 
also produces a similar effect, as does both conduction and diffusion 
together. 

3.4. Simulat ion With �9 Dependent  Upon the Food Density 

In an effort to make a more realistic simulation of cod population 
dynamics the logistic map parameter r was set for each cell as a function 
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of the food density for the particular cell. This means that r depends 
generally on the cell coordinates as well as time. The scheme chosen has a 
certain amount of arbitrariness, but it is designed to model the dependence 
of reproduction on the food source in a simple manner so that general 
features of the behaviour will be easy to understand and nontrivial at the 
same time. 

The value of r for each cell was reset every reproductive cycle accord- 
ing to the following procedure: 

1. food - cod < 0, 0 < r < 1 (fixed point equal to zero) 

2. 0 < f o o d - c o d  <0.25, 1 < r < 2 . 2 5  (fixed point greater than zero) 

3. 0.25 < f o o d - c o d  <0.5, 2.25 < r < 3 . 5 0  (limit cycle regime) 

4, 0.5 < f o o d - c o d ,  r=4 .00  (chaotic regime) 

For each range, r is selected from a uniform distribution. The first condi- 
tion models an inadequate food supply to support the cod. The logistic 
parameter is selected so that the population will rapidly decrease. Condi- 
tion 2 allows the cell population to approach a nonzero fixed point when 
there is an adequate food supply. Condition 3 models an abundant food 
supply, so that the population can grow significantly in short intervals of 
time. The allowed values of r are within the double and quadruple limit 
cycle regime. Finally, when the food supply is so large as to not 
appreciably constrain the population growth, r is set so that the population 
can change to any value on the unit interval. 

In the simulations, the mean value of the food was set to 0.8. Without 
any food noise or diffusion, the system exhibits an apparently double-valued 
limit cycle, with a small amount of noise (see Fig. (6). This behaviour is a 
result of oscillations of the system between the above cases 2 and 3. The 
biennial mechanism is of a third type, which differs from both the double 
limit cycle with fixed r = 3.25 and the chaos-diffusion interplay. Instead, the 
maps are reaching a steady state where, at some time step, all of them have 
values such that 0 < f o o d - c o d  <0.25. Condition 2 is realized, and all 
maps are given some 1 < r < 2.25. Application of the logistic map equation 
brings all of the cell populations down significantly from their previous 
values. They now reach a level where 0.25 < food - cod < 0.50. This makes 
all of the maps satisfy condition 3, so that they are subjected to an r value 
in the double and quadruple limit cycle range. Because they have a low 
value, they are close to one of the lower branches of the cycles. When the 
logistic equation is applied once again, the populations will jump to values 
close to an upper branch of one of the limit cycles. Now, all maps satisfy 
condition 2, and the process repeats. 

822/81/3-4-17 
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The fact that the total system follows the cycle in tandem, rather than 
a certain percentage existing on each leg, is caused by the same mode- 
locking phenomenon observed for constant r =  3.25. When conduction is 
allowed to move the cod, they tend to become equal in all cells. One can 
easily check this by turning the conduction off and noting that the maps 
become unsynchronized. 

4. CONCLUSION 

The simulation results presented here for a modified Fisher equation 
with reproduction occurring after discrete time intervals yield an interesting 
variety of effects. The results are clearly different and much richer than 
those of the continuous Fisher equation. In many instances, a biennial 
oscillation in the total population is observed. Of the three possible 
mechanisms found here, the one for fixed r in the chaotic regime is perhaps 
the most surprising. The interplay between random diffusion and the 
chaotic attractor leads to an ordering of the population which can only be 
seen in a statistical manner from the behaviour of the population distribu- 
tion of the cells. 
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The cycles that appear on a short time scale may also be changed in 
the long term by transport of the cod. For example, diffusion of cod can 
eventually interrupt the bienniaI oscillations in the cases where r is fixed 
independent of the food supply. This is a possible mechanism for long-time 
cycles in cod population. 

A good area for future work is the effect that harvesting a portion of 
the population has for discrete reproduction. Preliminary studies indicate 
that the total population will fall precipitously to zero after several years if 
a fixed quota above a certain threshold is removed annually, although for 
quotas below this threshold the total population is relatively high and 
stable. This couId be relevant to the drop in population of many species, 
including the Atlantic cod as a result of overharvesting. 
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